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Consideration is given to the initial stage of the process of thermal and dynamic interaction of a
"collective" of melt particles that are in contact with a cooling liquid.

Problems on perfecting the technology of the production of powders of light alloys require that the
processes of interaction between the particles of molten metal and the coolant be studied. The contact of a
strongly superheated particle with a liquid is characterized by high rates of heat transfer and can end with
thermal explosions of different intensity, which necessitates the prediction of the safety of a number of tech-
nological operations in metallurgy.

Experimental works are known where the physical models of thermal interaction between a melt and
a coolant are suggested [1, 2]. The authors of the models of the physical mechanism of vapor explosion point
to the importance of investigating the initial stage of interaction of a melt particle with a cooling liquid and
assume that the dynamics of phase transformations determines further development of the process in either
the "normal" direction where the metal is crystallized to form a more or less regular shape or the direction
of melt fragmentation that leads to vapor explosion [2, 3].

If an incandescent particle is immersed in a cold liquid, then, owing to the intense heat transfer near
the surface of contact, a superheated layer is formed, which boils up after an interval of ~  10−6 sec [1]. As a
consequence of the inertia of the liquid, which prevents expansion of the vapor film, the vaporpressure grows
at a high rate. From the experimental results, the characteristic time within which a pressure pulse is observed
is ~  10−4 sec; its amplitude depends on numerous factors and can attain 10−100 MPa [2].

In the case of contact of a set of melt particles with an underheated liquid, an acoustic pulse is
formed, whose value is undoubtedly influenced by the effects of the interaction of boiling vapor films.

The problem of evaporation of the condensed phase on the surface of superheated spherical particles,
even for an isolated inclusion, is a complicated nonlinear problem and requires that one account for many
thermophysical factors [4]. We would like to note, in particular, [4−6], in which mathematical models of dy-
namic and thermal interaction of a hot particle with a coolant in the stage of film boiling are derived for an
isolated particle. The collective effect is evaluated, if at all, on the basis of semiempirical relations. The aim
of the present work is to model the behavior of a finite set of superheated spherical particles in their contact
with a liquid medium in the initial stage of evaporation.

The model of thermal and dynamic interaction of spherical particles with a cold viscous incompress-
ible fluid is constructed under the assumption that the particles are concentrated in a certain volume of the
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fluid, i.e., a "cloud", which is substantially smaller than the entire volume of the coolant, and the charac-
teristic particle radius is considerably smaller than the characteristic distance between them rb0 << l0.

The spherically symmetric flow of the viscous incompressible fluid initiated by an expanding vapor
film is known to be the potential. The velocity potential Φ satisfies the Laplace equation

∆Φ = 0 (1)

and the boundary conditions

∂Φ
∂r



 r=R

 = vfR ,   
∂Φ
∂r



 r=∞

 = 0 . (2)

For low concentrations of the particle, we can consider roughly that the potential of the velocity field
at an arbitrary point M is composed of the sum of the potentials of the flows created by individual inclusions
[7]:

Φ (M, t) = − ∑ 
i

vfR
(i) R(i)

2

 ri
 ,

(3)

where ri is the radius vector drawn from the center of the ith particle to the point M.
We consider the potential of the velocity field near the vapor-film surface around the ith particle after

reduction to dimensionless form:

Φ
~

i = − 
v~fR

 (i) R
~ (i)

2

r~i

 − ε ∑ 

j≠i

κij v
~

fR
 (j) R

~ (j)
2

 ,   κij = ∑ 

j≠i

l0

lij
 ,   Φ

~
i = Φi 

tchar

rb0
2  ,   r~ = 

r

rb0

 ,   ε = 
rb0

l0
 .

(4)

The first summand in (4) corresponds to the velocity potential around the isolated inclusion, while the second
term gives a correction of the order of ε for the influence of the other melt particles, surrounded by the
growing vapor layer as well, on the flow characteristics. Since for the investigated case ε << 1, the contribu-
tion of the potentials created by all external sources is substantially smaller than the value of the self-poten-
tial of the ith particle.

The motion of the vapor film boundary around each particle can be determined with the La-
grange−Cauchy integral using kinematic and dynamic conditions at the interface [8]:

∂Φ(i)

∂t
 + 

1

2
 




∂Φ(i)

∂r





2

 + 
1

ρf

 






pv
(i) − p∞ − 

2σ

R(i) − 
4µfvfR

(i)

R(i)  + j(i)
2

 




1

ρvR
(i)  − 

1

ρf











 = 0 , (5)

where i = 1, ..., N. The index on the radial coordinate is omitted here and henceforth.
The scheme of the phase transitions is assumed to be equilibrium; the temperatures of the fluid and

the vapor on the bubble wall coincide and are equal to the saturation temperature for this pressure:

Tf
(i)

r=R
(i) = Tv

(i)
r=R

(i) = Ts .
(6)

The pressure and the temperature of the saturated vapor are related by the Clausius−Clapeyron relation, using
which we can obtain
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dTs
(i)

dt
 = 

Bv

L
 
Ts
(i)

2

pv
(i)  

dpv
(i)

dt
 .

(7)

Since the film thickness in the initial stage of evaporation is small, δ ~   10−6−10−4 m, for the vapor
pressure we can adopt the homobaric hypothesis pv = pv(t) [8]. The assumption of ideality of the vapor
makes it possible to obtain the integral of the equation of heat efflux in the vapor film which expresses the
rate of change of the pressure as a function of the work of surface forces and of the heat fluxes at both
interfaces [8]:

dpv
(i)

dt
 = 

3 (γ − 1)

R(i)
3

 − rb
(i)

3 






Z(i) − 

γR(i)
2

γ − 1
 



pv
(i) 

dR(i)

dt
 − j(i)BvTs

(i)










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(i)
2

 




∂Tv
(i)

∂r



 r=R

(i)
 − λvrb

(i)
2

 




∂Tv
(i)

∂r



 r=rb

(i)
 . (8)

The temperature profile in the vapor surrounding the particle is approximated by a hyperbolic function of the
form

Tv
(i) (r, t) = Ψ1 + 

Ψ2

r
 ,   Ψ3 = R(i) ⁄ (R

(i) − rb
(i)) ,   Ψ1 = Tm

(i) − Ψ3 (Tm
(i) − Ts

(i)) ,   Ψ2 = Ψ3rb
(i) (Tm

(i) − Ts
(i)) . (9)

Here Tm is the surface temperature of the melt particle, which is determined from the heat-balance equation

1

3
 rb
(i) ρmcm 

dTm
(i)

dt
 = λv 





∂Tv
(i)

∂r



 r=rb

(i)
 . (10)

The temperature distribution in the fluid is described by the convective heat-transfer equation

ρfcfp 




∂Tf
(i)

∂t
 + vf

(i) 
∂Tf

(i)

∂r




 = 

1

r2 
∂

∂r
 



λfr

2 
∂Tf

(i)

∂r




 . (11)

The heat balance at the vapor−cooling medium interface is expressed by the relation

− λv 




∂Tv
(i)

∂r



 r=R

(i)
 + λf 





∂Tf
(i)

∂r



 r=R

(i)
 + σrad 


αmTm

(i)
4

 − αfTs
(i)

4
 = Lj(i) . (12)

At the moment of boiling, the following initial conditions are adopted:

R(i) (0) = rb
(i) + δ0 ,   vfR

(i) (0) = 0 ,   Tm (0) = Tm0 ,   p
(i) (0) = p∞ ,   Tf

(i) (r, 0) = Ts
(i) (0) = Ts (p∞) = T∞ . (13)

The formulated system of equations and boundary and initial conditions (1)−(13) was investigated by
the small-parameter method. After reduction of the equations to dimensionless form, all the sought quantities
were represented in the form of series expansion in ε:

R
~ (i) = R0i + R1iε + R2iε

2 + o (ε2) ;   p~v
 (i) = p0i+ p1iε + p2iε

2 + o (ε2) ;

v~fR
 (i) = v0i + v1iε + v2iε

2 + o (ε2) ;   j
~ (i) = j0i+ j1iε + j2iε

2 + o (ε2) ;
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T
~

q
 (i) = Tq0i

 + Tq1i
ε + Tq2i

ε2 + o (ε2) ,   q = s, f ;

v~fR = vfR 
tchar

rb0
 ;   p~ = 

p

p∞
 ;   R

~
 = 

R

rb0
 ;   T

~
 = 

T
T∞

 ;   j
~
 = 

j

jchar
 ;   jchar = (ρf p∞)

1 ⁄ 2 .

The zero approximation (ε0) for the problem under consideration represents the problem of boiling of
a vapor film on an isolated particle. The first approximation (ε1) and approximations of higher order take into
account the collective effect of the interaction of boiling vapor films with simultaneous cooling of a set of
particles.

The equation for the fluid velocity at the boundary with the vapor layer in the zero and first approxi-
mations is as follows:

v
.
0i R0i + 2v0i R

.
0i − 1 ⁄ 2v0i

2  = trel
2  



p0i − 1 − 

2σ~

R0i
 − 

4µ~v0i

R0i
 + j0i

2  



ρ~f 

Ts0i

p0i
 − 1








 ,

trel = 
tchar

tRa
 ;   tRa = rb0 √ ρf

p∞
 ;   µ~ = 

µf

tchar p∞
 ;   σ~ = 

σ
rb0 p∞

 ;   ρ~f = 
ρf

p∞T∞
 ;

v
.
1i R0i = − v

.
0i R1i − 2v1i R

.
0i − 2v0i R

.
1i + v0iv1i +  ∑ 

i≠j

 κij (v
.
0j R0j

2  + 2v0j R0j R
.

0j) +

+ trel
2  



p1i + 

2σ~R1i

R0i
2  − 

4µ~

R0i

 



v1i − 

v0i R1i

R0i




 − 2j0i j1i




 + ρ~f 





j0i
2

p0i
 Ts1i

 + 
Ts0i

p0i
 



2j0i j1i − 

j0i
2

p0i
 p1i








 .

Here and henceforth, the sign ~  above the dimensionless variables is omitted, while above the constant quan-
tities it is retained. The equations for the vapor-film radius in the zero and first approximations are identical:

R
.

0i = v0i + j
~
p j0i ,   j

~
p = 

jchartchar

rb0 ρf
 ,   R

.
1i = v1i + j

~
p j1i .

The equations for the vapor pressure in the zero and first approximations are obtained in the form

p
.

0i = − 
3γR0i

2

γ − 1
 

p0i R

.
0i − j

~
p ρ~f j0i Ts0i



 ,

p
.

1i = − 
3γ

R0i
3  − bi

3 









R0i

2  R
.

0i p1i + p0i 



R0i

2  R
.

1i + 



2R0i R1i − 

3R0i
4  R1i

R0i
3  − bi

3




 R
.

0i




 −

− j
~
p ρ~f 




R0i

2  j1i Ts0i
 + j0i 




R0i

2  Ts1i
 + Ts0i

 



2R0i R1i − 

3R0i
4  R1i

R0i
3  − bi

3






















 ,   bi = 

rb
(i)

rb0

 .

The saturation temperature in each approximation can be determined from the relations

T
.

s0i
 = sL 

Ts0i

2

p0i
 p
.

0i ,   sL = 
BvT∞

L
 ,   T

.
s1i

 = sL 




Ts0i

2

p0i
 p
.

1i + 
p
.

0i

p0i
 



2Ts0i

 Ts1i
 − 

Ts0i

2

p0i
 p1i








 .
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The equation for the temperature in the fluid surrounding a particle in the zero approximation is

∂Tf0i

∂t
 + 

v0i R0i
2

r2  
∂Tf0i

∂r
 = 

1

Pef r
2 
∂

∂r
 



r2 
∂Tf0i

∂r




 ,   Pef = 

rb0
2

tcharaf

 ,    af = 
λf

ρfcpf
 ;

in the first approximation it is

∂Tf1i

∂t
 + 

1

r2 



(v1i R0i + v0i R1i) 

∂Tf0i

∂r
 + v0i R0i 

∂Tf1i

∂r




 = 

1

Pef r
2 
∂

∂r
 



r2 
∂Tf1i

∂r




 .

The conditions at the boundary of the phase transitions in the zero and first approximations are written in the
form

− λvf 
bi

R0i
 

Ts0i

R0i − bi
 + 
∂Tf0i

∂r



 r=R0i

 + jr (αm Tm
4  − αf Ts0i

4 ) = jt j0i ,

λvf = λv
 ⁄ λf ,   jr = 

σrad T∞
3  rb0

λf
 ,   jt = 

L jchar rb0

λfT∞
 ;

− λvf 




bi

R0i

 
Ts1i

R0i − bi

 − 
bi R1i

R0i
2  

(Ts0i
 − Tm)

(R0i − bi)
2  (2R0i − bi)




 + 
∂Tf1i

∂r



 r=R0i

 +

+ R1i 
∂2Tf0i

∂r2



 r=R0i

 − 4jr αf Ts0i

3 Ts1i
 = jt j1i .

The initial conditions for the first approximation are the zero ones, while for the zero approximation they are
as follows:

R0i = bi + 
δ0

rb0
 ,   v0i = 0 ,   p0i = 1 ,   Ts0i

 = Tf0i
 = 1 ,   Tm = 

Tm0

T∞
 . 

The character of change in the parameters of the process in both the first and second approximations
can be studied only by numerical methods. In the present work, use is made of the method of straight lines,
which reduces a solution of partial differential equations to that of the Cauchy problem for a system of ordi-
nary differential equations. The solution has been obtained by the Runge−Kutta method. To increase the ac-
curacy of approximation of the equation of convective heat transfer, grids nonuniform on the space coordinate
were used.

Figures 1−3 present the calculation results illustrating the effect of the collective interaction of vapor
films in the initial stage of evaporation of the condensed phase in the case of contact of a group of high-tem-
perature solid metal particles with water. The calculations were carried out for a "cloud" of particles of the

same radius rb0 = 1⋅10−4 m uniformly distributed throughout the volume at the nodes of a square grid. In this
case, for instance, for 5 and 25 particles the contribution made by the remaining inclusions to the value of
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the potential of the flow field about the central particles is determined by ∑ 

j=2

4

κ1j = 4 and ∑ 

j=2

24

κ1j = 13.81,

respectively. By the 1st particle is meant that located at the center of the collective. The ratio of the particle
radius to the characteristic distance between the particles ε was varied.

The initial width of the vapor layer δ0 = R0 − rb0 was assumed to be equal to 10−6 m, p∞ = 105 Pa,
and T∞ = 373 K. For the melt particle ρm = 8900 kg/m3, λm = 0.683 W/(m⋅deg), and cm = 0.39⋅103

J/(kg⋅deg). The particle temperature was Tm0 = 1073 K. The parameters of radiative heat transfer were as
follows: σrad = 5.76⋅10−8 W/(m2⋅deg4), αm = 0.85, and αf = 0.15. The thermophysical characteristics of the
vapor were: λv = 0.0248 W/(m⋅deg), cv = 2.034⋅103 J/(kg⋅deg), and γ = 1.28. The characteristic time of the
process was proportional to the time of equalization of the temperature in the vapor: tchar = (10δ0)2 ⁄ rb0. The
thermal diffusivity of the vapor was evaluated at the initial instant of time and was equal to av = 2.0⋅10−5

m2/sec. For the chosen conditions, tchar = 0.2⋅10−5 sec.
The values of the thermophysical parameters of the fluid (water) were assumed to be as follows: λf

= 0.683 W/(m⋅deg), µf = 0.3⋅10−3 Pa⋅sec, δ = 0.062 N/m, ρf = 980 kg/m3, cpf = 4.2⋅103 J/(kg⋅deg), and L =
2.3⋅106 J/kg. The thermal diffusivity of the fluid was af = 1.7⋅10−7 m2/sec, and the Pe′clet number was Pef =
1.24⋅104, which testifies to the rather substantial role of convection in this process.

As is seen from Fig. 1c, the interparticle interaction exerts a pronounced influence on the maximum
pressure in the vapor. With increase in the number of particles the amplitude of the pressure pulse increases,
whereas its duration decreases. Unfortunately, the experimental results available in the literature cannot be
used for a quantitative comparison to the calculated values since they do not provide a sufficient amount of
data on the thermophysical characteristics of the process and, moreover, the experimental conditions differ

Fig. 1. Time variation in the pressure in the vapor film [a) ε = 0.01] and
its thickness [b) ε = 0.05] in relation to the number of particles in the
group: 1) 1; 2) 5; 3) 25.

Fig. 2. Influence of the effect of interparticle interaction on the time
variation in the temperature of the saturated vapor (ε = 0.01): 1, 2, 3)
notation is the same as in Fig. 1.
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from those assumed in this model problem. Nonetheless, it is pertinent to note that the order and the qualita-
tive change of the characteristics in the initial stage of vapor explosion coincide. With a collective of particles
being present, we can consider that the behavior of the vapor film on an individual particle is similar to its
development in a medium with larger inertia.

The calculations show that the expansion of the vapor film on any particle of the "cloud" is slower
than in the case of an isolated particle (Fig. 1b). This is associated with the fact that the neighboring particles
experience expansion they create extra pressure in the coolant.

With increase in the pressure in the vapor, the temperature of the latter at first increases (Fig. 2) and
once the pressure peak has been passed (for t ~   0.6tchar) the interface temperature undergoes a corresponding
decrease. The collective effect leads to higher maximum values of the saturation temperature Ts. As a conse-
quence, a greater temperature drop of the fluid around the vapor interlayer corresponds to a greater amount
of inclusions (Fig. 3).

Thus, the calculations carried out for the model of cooling of a collective of particles in a liquid
medium have shown the pronounced influence of interaction effects on the thermal and dynamic charac-
teristics of the initial stage of film boiling that develops on inclusions.

This work was carried out with financial support from the Russian Foundation for Basic Research,
grant No. 95-02-06075-a.

NOTATION

r, radial coordinate; R, radius of the vapor film; δ0, initial thickness of the vapor layer around parti-
cles; Φ, velocity potential; v, velocity; t, time; tchar, characteristic time of the process; tRa, characteristic time
of expansion of a vapor bubble; rb, particle radius; rb0, characteristic radius of particles; b, dimensionless
particle radius; lij, distance between the centers of the ith and jth particles; l0, characteristic distance between
particles; p, pressure; ρ, density; σ, surface tension of the liquid phase; µ, dynamic viscosity of the coolant;
j, density of the vapor-mass flux across the surface of phase transitions; T, temperature; Tm0, initial tempera-
ture of the melt; L, heat of vaporization; Bv, individual gas constant; γ, polytropic index; λ, thermal conduc-
tivity; cp and cv, heat capacity at constant pressure and volume; σrad, Stefan−Boltzmann constant; αm and αf,
coefficients of radiation and absorption of the vapor layer boundaries; ε, small parameter; a, thermal diffusiv-
ity; Pe, Pe′clet number; jp, sL, jR, it, λvf, and trel, dimensionless combinations. Subscripts and superscripts: 0
and 1, zero and first approximations; v, vapor; f, fluid; m, melt; ~   , dimensionless values of the variables; i,
number of a particle; s, saturation state; R, fluid−vapor interface; ∞, values at a distance from a collective of
particles; point above the variable, time derivative.

Fig. 3. Temperature distribution in the liquid medium in the radial direc-
tion for t = 0.6tchar (ε = 0.01): 1, 2, 3) notation is the same as in Fig. 1.
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